
STATIC OUTPUT FEEDBACK

STABILIZATION

A story of people and matrices

A. Bacciotti

Politecnico di Torino, Italy

Mathematical Control Theory, Porquerolles, 2017

Special session in honor of Gianna Stefani



At the University of Firenze, during the ’70s of the past

century, Roberto Conti (1923-2006) introduced a team of

young (at that time) students to mathematical control theory:

Giuseppe Anichini, Rosamaria Bianchini, Luciano Pandolfi,

Paolo Nistri, Pietro Zecca (and myself)



At the beginning Gianna was not in the team.

Conti’s interest was basically focused on finite or infinite

dimensional linear systems, but around 1975, Claude Lobry was

visiting Firenze, giving some lectures about the new (at that

time) topic of geometric nonlinear control theory.

That was the occasion to enroll Gianna in the team.



Later, Sussmann, Jurdjevic, Hermes and many other

mathematicians working on this promising subject visited

Firenze and delivered lectures.

The focus was especially on controllability, but Conti’s legacy

included other topics like stability and feedback stabilization.

We investigated possible extension of some linear stabilization

techniques to certain class of nonlinear systems. One of the

first papers we published on this problem is

A. Andreini, G. Stefani and A.B., Global stabilizability of

homogeneous vector fields of odd degree, Systems and Control

Letters (1988)



STATIC STATE STABILIZATION

Given a time-invariant linear system

ẋ = Ax+Bu x ∈ R
n, u ∈ R

m

the static state feedback stabilization (SSFS) problem consists

of find (if it exists) a matrix K such that the closed-loop

system

ẋ = (A−BK)x

(obtained by replacing u = −Kx) is asymptotically stable at the

origin i.e., the matrix A−BK is Hurwitz (all its eigenvalues

have a negative real part).

This problem was basically solved at the time our story begins,

and many algebraic characterizations of systems admitting a

stabilizing static state feedback were known.



THE ARE APPROACH

The characterization we are interested in is the following one:

A linear system is stabilizable by a static state feedback

⇐⇒

∃ positive definite, symmetric matrices P and Q solving the

algebraic matrix Riccati equation

(ARE) AtP + PA− PBBtP = −Q



Advantages of the ARE:

• It provides an explicit feedback u = −γBtPx (for any

sufficiently large γ)

• It points out a link with the infinite horizon linear quadratic

optimization problem



The following two remarks were the starting point of our paper

• The role of homogeneity

• An equivalent reformulation of the ARE

(C) ∃ P such that kerBtP ⊆ {x : xtPAx < 0} ∪ {0}

(basically, a CLF condition)

ARE
=⇒
⇐=

static state feedback
stabilization

=⇒
⇐=

(C)

The “black” implications are easy, the “red” one is more

difficult (R. Conti, Academic Press)



Our main result in the 1988 paper was:

Theorem Consider a system

ẋ = f(x) +Bu

where f(x) is a homogeneous vector field of odd degree k.

Assume that condition

(CNL) kerBtP ⊆ {x : xtPf(x) < 0} ∪ {0}

holds for some P . Then for γ large enough, the system is

stabilizable by the homogeneous feedback

u = −γ||x||k−1BtPx

In fact, we can take γ = 1 w.l.o.g. (replace P by γP)



A long interact ....

... people take different ways



OUTPUT FEEDBACK STABILIZATION

In view of applications, static feedback of the full state is not

feasible in general: only a few of the state variables (or a linear

combination of them, y = Cx, called the output) can be

actually measured and re-injected into the system.

We are so led to the notion of static output feedback.



output feedback vs. state feedback

xu y
A,B C

K

F



We say that the system (with output map)






ẋ = Ax+Bu

y = Cx

with x ∈ Rn, u ∈ Rm, y ∈ Rp is static output feedback

stabilizable (SOFS) if there exists a matrix F such that the

closed-loop system

ẋ = (A−BFC)x

(obtained by replacing u = −Fy) is asymptotically stable at the

origin.

It turns out that the solution of this problem is much more

intriguing.



• There are examples of completely controllable and

completely observable linear systems which are not SOFS

• There are systems with the following property: for each

stabilizing output feedback u = −Fy, we may obtain other

stabilizing output feedback of the form u = −γFy but only if

γ ∈ (γ1, γ2).

A =

(

0 2
−1 1

)

B =

(

1
1

)

C =
(

0 1
)

(stabilizable by u = −γy only if 1 < γ < 2)



A LOOK AT THE LITERATURE

D.S. Bernstein, Some open problems in matrix theory arising in

linear systems and control, Linear Algebra and its Applications

(1992)

“One of the most basic unsolved problems in control theory is

the problem of (static) output feedback stabilizability ”

R. Brockett, A stabilization problem, in Open Problems in

Mathematical Systems and Control Theory, Springer (1999)

“It is, of course, well known that the usual output stabilization

problem, asking about the existence of a constant feedback

gain that stabilizes the system, does not have a especially

clean answer. ”



V.D. Blondel, J.N. Tsitsiklis, A survey of computational

complexity results in systems and control, Automatica (2000)

“...widely studied and still unsolved, static output feedback

problem... a satisfactory answer to this problem has yet to be

found. This problem is often cited as one of the difficult open

problems in systems and control. Still, despite various attempt,

it is unclear whether the problem is NP-hard ”

In spite of these citations, some attempts to solve the SOFS

problem were actually performed during the last decade of the

past century: an account can be found in

V.L. Syrmos, C.T. Abdallah, P. Dorato, K. Grigoriadis, Static

output feedback - A survey, Automatica 1997



STATE OF THE ART

We are in particular interested to possible solutions based on

extensions of the ARE and/or the CLF conditions.

We do not follow a chronological development, but rather we

present the material according to the approach



THE ARE APPROCH

(assuming rankC = p)

The first paper in this direction is:

A. Trofino-Neto, V. Kucera Stabilization via static output

feedback, IEEE Trans. AC (1993)

It makes use of the notion of Moore-Penrose pseudo-inverse.



Let C be a matrix with p rows and n columns (p ≤ n). The

Moore-Penrose pseudo-inverse of C is the (unique) matrix C†

with n rows and p columns such that

CC†C = C and C†CC† = C†

CC† and C†C are symmetric.

The space Rn can be decomposed as im (Ct)⊕ ker (C).

Moreover, the subspaces im (Ct) and ker (C) are orthogonal

each other. The matrix Eim = C†C represents the orthogonal

projection on im(Ct), while the orthogonal projection on

ker (C) is given by Eker = I − Eim .



Trofino-Neto, Kucera Theorem:

The system is stabilizable via static output feedback IFF

(A1) There exist a matrix L, positive definite matrices P,Q

and γ > 0 such that the modified ARE

AtP + PA− γEim (BtP + L)t(BtP + L)Eim = −Q

holds. Moreover, when (A1) holds, a stabilizing feedback can

be taken of the form u = −γFy, with F = (BtP + L)C† (again,

γ = 1 w.l.o.g.).



COMMENTS

• The idea of “adding L” is borrowed from KLYP Theory

(optimal stabilization w.r.t. quadratic cost, where however, L

is known)

• The proof of the implication SOFS =⇒ (A1) is correct, but,

unfortunately, the reverse implication is false

This was pointed out by a counterexample in

Y.Y. Cao, Y.X. Sun, W.J. Mao, A new necessary and sufficient

condition..., IEEE Trans. AC 1998

A =

(

0 1
1 0

)

B =

(

1
0

)

C =
(

1 −1/2
)



In the same paper the authors propose the following correction:

(A2) There exist a matrix L, and positive definite matrices

P,Q such that

AtP + PA−Eim (BtP + L)t(BtP + L)Eim+StS = −Q

where S = LEim −BtPEker

While there is no doubt that (A2) is sufficient for SOFS, the

proof that it is necessary is only sketched, and non convincing.



A convincing necessary and sufficient condition appears in

Y.Y. Cao, J. Lam, Y.X. Sun, Static output feedback

stabilization..., Automatica 1998

Theorem The system is stabilizable via static output feedback

IFF

(A3) There exist a matrix M , and positive definite matrices

P,Q such that

AtP + PA− PBBtP + (BtP −MEim )t(BtP −MEim ) = −Q

Moreover, when (A3) holds, a stabilizing feedback can be

taken of the form u = −Fy, with F = MC†.

(M and L are related by L+BtP = M)



THE CLF APPROACH

The notion of CLF goes back to

Zvi Artstein , Stabilization with Relaxed Controls, Nonlinear

Analysis, Theory, Methods and Applications, (1983)

but remained ignored until

Sontag E.D., A “Universal” Construction of Artstein’s

Theorem on Nonlinear Stabilization, Systems and Control

Letters, (1989)



The CLF approach was used in

J. Tsinias, N. Kalouptsidis, Output feedback stabilization IEEE

TAC 1990

to provide the following necessary and sufficient condition for

SOFS

∃P : ∀y ∃u = u(y) with u(0) = 0 such that ∀x 6= 0 for which

Cx = y one has

xtPAx+ xtPBu(y) < 0

(available also in a nonlinear version)



Using the pseudo-inverse formalism, Tsinias-Kalouptsidis

condition reads

(B) There exists M and positive definite P,Q such that

xtPAx− xtPBMEimx = −xtQx

Remark It can be proved that (A3) ⇐⇒ (B); the proof that

(B) =⇒ (A3) requires different P,Q



COMMENTS

Contrary to the prevalent opinion in the emerging literature,

some mathematical solutions of the SOFS problem did exist,

but have been ignored.

However, the relationship among the different approaches is

not completely clear

Moreover, these solutions requires a new matrix (L, M , S

depending on the notation) which introduces additional

complexity from the computational point of view.



A COMPROMISE BETWEEN ARE AND CLS:

OUR OLD WAY

This leads to a sufficient (not necessary) condition for SOFS

which does not involve the matrix L

This means we are searching stabilizing feedback of the form

F = −γBtPC†y (i.e., M = BtP)



Notation Given a positive definite matrix P , we set

Q0(x) = xt(AtP + PA)x = 2xtAPx

Q1(x) = xt(EimPBBtPEim )x = ||BtPEimx||2 ≥ 0

Q2(x) = xt(EkerPBBtPEker )x = ||BtPEker x||
2 ≥ 0

Q3(x) = xt(PBBtP)x = ||BtPx||2 ≥ 0

and finally

Q(x) = Q1(x)−Q2(x) +Q3(x)



Note that:

• The classical ARE is equivalent to: there exists a positive

matrix P such that

Q0(x)−Q3(x) < 0 , (x 6= 0)

• Trofino-Neto, Kucera condition (A1) (for L = 0) is

equivalent to

Q0(x)−Q1(x) < 0 , (x 6= 0)

• Cao, Sun, Mao condition (A2) (for L = 0) is equivalent to

Q0(x)−Q1(x) +Q2(x) < 0 , (x 6= 0)

• Cao, Lam, Sun, condition (A3) (for L = 0) is equivalent to

Q0(x) +Q2(x)−Q3(x) < 0 , (x 6= 0)



• Tsinias-Kalouptsidis condition (B) (for L = 0) is equivalent

to

Q0(x)−Q(x) = Q0(x)−Q1(x) +Q2(x)−Q3(x) < 0 , (x 6= 0)

Note that (A3) implies (B)



Having in mind possible extensions to nonlinear homogeneous

systems, it is convenient to reformulate the basic sufficient

condition for SOFS as

Lemma Condition

(Bγ) ∃P, γ : Q0(x)− γQ(x) < 0 , (x 6= 0)

implies SOFS with F = −γBtPC†y

Of course, we expect that (Bγ) is not necessary: confirmed by

the example

A =

(

1 1
0 −2

)

B =

(

0
1

)

C =
(

1 0
)



Next we provide an equivalent formulation of (Bγ)

Additional notation:

S = {x ∈ Rn : ||x|| = 1}

Moreover, for a given P ,

S+ = {x ∈ S : Q0(x) ≥ 0}

S− = {x ∈ S : Q0(x) < 0} = S \ S+



S++ = {x ∈ S : Q0(x) ≥ 0,Q(x) > 0}

S−− = {x ∈ S : Q0(x) < 0,Q(x) < 0}

S−+ = {x ∈ S : Q0(x) < 0,Q(x) ≥ 0}

S+− = {x ∈ S : Q0(x) ≥ 0,Q(x) ≤ 0}



S++

S+− S−−

S−+

Partition of the unit sphere S



Theorem Condition (Bγ) holds if and only if

(H1) x ∈ S+ =⇒ Q(x) > 0 (equivalent to S+− = ∅)

and

(H2)

sup
x∈S−−

|Q(x)| · sup
x∈S++

Q0(x) ≤ inf
x∈S−−

|Q0(x)| · inf
x∈S++

Q(x)

Condition (H2) identifies the “right” values of γ.



An extension to systems with nonlinear (homogeneous of odd

degree k) drift term can be obtained replacing

Q0(x) by QNL(x) = 2xtPf(x)

Theorem If conditions (H1) and (H2) holds for some P , then

there exists a constant γ > 0 such that the system is

stabilizable by the static output feedback

u = −γ||x||k−1BtPC†y



Finally, we may extend the previous results, removing the

restriction L 6= 0

Besides the quadratic forms Q0(x), Q1(x), Q2(x), Q3(x), we

consider

R1(x) = ||(BtP + LEim )x||2 ≥ 0

R2(x) = ||LEimx||2 ≥ 0

and re-define Q(x) = Q1(x)−Q2(x) +R1(x)−R2(x)

With this new notation the Lemma and Theorem above

remain valid, providing a more general sufficient condition for

SOFS, with feedback

u = −γ||x||k−1(L+BtP)C†y



END OF THE TALK, BUT NOT OF THE STORY...


